大家好,今天小编关注到一个比较有意思的话题,就是关于书籍简介数据集的问题,于是小编就整理了2个相关介绍书籍简介数据集的解答,让我们一起看看吧。
自学数据分析需要看哪些书?
数据分析是当下十分火爆的岗位,被各种自媒体称为低门槛,高工资的岗位,但我想说的是真正的数据分析师绝非你所想象的那样只会Python或者是SQL,更重要的是对业务的思考与剖析。
那么自学数据分析的时候,最重要的也是最基本的当属SQL语句了,这里为你推荐一本书,作为数据分析师可能你不需要完成对SQL的维护与开发,但也要会最基本的增删改查和跨表查询。
然后就是必要的技能,统计分析了,这里可以去大学生mooc上看录播课,老师的讲解比较细致并且有详细的知识点和课后问题,很适合恶补自己的统计学知识。
2、MySQL 5权威指南 第三版
3、Python基础教程
4、深入理解MySQL
6、从Excel到Python--数据分析进阶指南
7、大数据分析的案例,方法与挑战
8、数据库系统、数据库与数据仓库导论
9、Python+Cookbook
数据分析要看的书籍,我推荐一些我觉得还不错的。大家可以先看电子版,或者去图书馆借阅,然后再选择是否需要购买。我按照数据分析需要学的东西来列举——Excel、SQL、Python、统计学、机器学习。
Excel作为常见的办公软件,拥有大量函数和公式,可以进行数据处理和图表输出。不需要编程基础,其他经常与数据接触的岗位,也建议学习。
《Excel函数与图表应用实例解析》,赛贝尔资讯,清华大学出版社:包含了Excel函数公式及其运用,非常适合入门;
《左手数据,右手图表》,徐军泰,机械工业出版社:包含Excel函数公式和动态图表两部分,相比前一本书内容更深入一些。
MySQL是世界上最受欢迎的开源数据库,很多中小企业甚至世界知名企业都有用到。所以学习数据库知识,我会推荐学习MySQL。
《MySQL必知必会》,[英] Ben Forta,人民邮电出版社:这本书比较系统性地讲述了我们学MySQL应该要掌握的知识,适合零基础的人。
如果非数据分析岗,只是为了满足其它岗位的少量数据处理需求,看上面三本书就够了。如果需要在数分岗位上精益下去,下面的这些内容不得不学。
任何一个技能的学习,都有从浅到深的过程,数据分析也不例外。因此我把推荐书籍划分成几个段位,更便于大家挑选。
适合对数据分析的入门者,对数据分析没有整体概念的人,常见于应届毕业生,经验尚浅的转行者。
具有一定的行业针对性,要求具备一定的分析常识,适合网站分析师,商业分析师以及数据产品经理。
更高阶的数据相对来说专业性较强了,如涉及到企业内部数据治理,数据结合的业务分析,数据可视化等。当然,还有数据挖掘算法之类的更深入的东西,这块没有研究就不瞎推荐了。
《谁说菜鸟不会数据分析入门篇》、《拯救您的Excel数据的分析、处理、展示(动画版)》、《深入浅出数据分析》、《数据挖掘技术》和《基于SPSS的数据分析》等等。
想要学习大数据,应该看些什么书?
谢谢邀请!
大数据的基础学科有三个,分别是数学、统计学和计算机学,所以学习大数据首先要具备一定的数学基础,包括高等数学、线性代数、概率论和离散数学,然后是基础的统计学基础和计算机基础。
虽然大数据的岗位比较多,遍布数据的***集、整理、存储、安全、分析、呈现等方面,但是比较核心的大数据岗位包括大数据平台研发、大数据应用开发和大数据分析等,这些岗位虽然在知识结构上有一定的区别,但是基本的大数据知识是一定要具备的,下面做一个介绍。
第一:算法设计。大数据的核心是数据价值化,数据分析则是数据价值化的重要途径,而算法设计则是数据分析的核心,因此算法设计在大数据知识体系中具有重要的地位。算法设计的书籍比较多,推荐读一下《算法导论》,这是一本比较经典的算法设计类书籍。
第二:编程语言。算法设计之后就需要进行算法实现,算法实现就需要掌握编程语言,能够实现算法的编程语言有很多,包括R、Python、J***a等都可以,推荐系统学习一下Python语言,***用Python完成算法实现在目前的大数据和机器学习领域是一个比较普遍的选择。
第三:大数据平台。大数据平台是大数据应用的基础,目前比较常见的大数据平台包括Hadoop和Spark。Hadoop平台已经被业界使用多年,已经形成了一个比较完善的生态体系,建议从Hadoop开始学起。
第四:机器学习。机器学习与大数据的关系越来越密切,目前在大数据分析领域经常***用机器学习的方式。通过大数据进入机器学习领域,再全面进入人工智能领域也是目前一个比较常见的学习路线。
大数据的学习需要一个系统的过程,另外最好在学习的过程中能结合实际案例进行,这样会有一个更好的效果。
作者简介:中国科学院大学计算机专业研究生导师,从事IT行业多年,研究方向包括动态软件体系结构、大数据、人工智能相关领域,有多年的一线研发经验。
欢迎关注作者,欢迎咨询计算机相关问题。
想从零开始的人,就不要过于依赖大数据。[_a***_],大数据会制约你的想象力,桎梏你的开发能力。大数据对从零开始的人来说,只可借鉴利用,绝不可重用。常规领域里的应用,那是另一说。哈哈。对吧?
第一阶段:大数据基础语言的学习
- J***a语言基础:J***a开发介绍、熟悉Eclipse开发工具、J***a语言基础、J***a流程控制、J***a字符串、J***a数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与***
- HTML、CSS与J***aScript:PC端网站布局、HTML5+CSS3基础、WebApp页面布局、原生J***aScript交互功能开发、Ajax异步交互、jQuery应用
- J***aWeb和数据库:数据库、J***aWeb开发核心、J***aWeb开发内幕
推荐书籍:
本书为我们带来了共78条程序员必备的经验法则,针对你每天都会遇到的编程问题提出了有效、实用的解决方案。 书中的每一章都包含几个"条目",以简洁的形式呈现,自成独立的短文,它们提出了具体的建议,对于J***a平台精妙之处的独到见解,以及优秀的代码范例。每个条目的综合描述和解释都阐明了应该怎么做,不应该怎么做,以及为什么。
Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架
推荐书籍:
在大数据的背景下,我很少看到关于数据建模,数据层,数据处理需求分析以及数据架构和存储实现问题。这本书却提供了令人耳目一新的全面解决方案。
《Hadoop权威指南(中文版)》从Hadoop的缘起开始,由浅入深,结合理论和实践,全方位地介绍Hadoop这一高性能处理海量数据集的理想工具。
《Hive编程指南》是一本Apache Hive的编程指南,旨在介绍如何使用Hive的SQL方法HiveQL来汇总、查询和分析存储在Hadoop分布式文件系统上的大数据***。
推荐书籍:
《Spark 快速大数据分析》是一本为Spark 初学者准备的书,它没有过多深入实现细节,而是更多关注上层用户的具体用法。不过,本书绝不仅仅限于Spark 的用法,它对Spark 的核心概念和基本原理也有较为全面的介绍,让读者能够知其然且知其所以然。
本书***用理论与大量实例相结合的方式帮助开发人员掌握使用Spark进行分析和实现机器学习算法。通过这些示例和Spark在各种企业级系统中的应用,帮助读者解锁Spark机器学习算法的复杂性,通过数据分析产生有价值的数据洞察力。
到此,以上就是小编对于书籍简介数据集的问题就介绍到这了,希望介绍关于书籍简介数据集的2点解答对大家有用。