大家好,今天小编关注到一个比较有意思的话题,就是关于书籍类型分析数据图怎么做的问题,于是小编就整理了3个相关介绍书籍类型分析数据图怎么做的解答,让我们一起看看吧。
自学数据分析需要看哪些书的?求推荐?
01 - 思路篇
《谁说菜鸟不会数据分析(入门篇)》和《深入浅出数据分析》这两本。
现在这两本书应该也有新版了,当然也有很多其他优秀的入门书籍,在京东上搜“数据分析”,你会发现很多很多书,随便挑两本看完,你就算基本了解数据分析是干什么的了。当然,这个阶段不要求你弄懂所有的知识点,主要是了解分析流程与基本概念,之后遇到问题再回来翻翻就好。当年面试支付宝,就靠这两本书了:)
02 - 技能篇
技能相关的书籍买过很多,就挑记笔记比较多的吧
SQL:《零基础学SQL》
Python:《Python编程 从入门到实践》
R语言:《R语言实战》
EXCEL:《数据图形化,分析更给力》
PPT:《PPT,要你好看》
1、《谁说菜鸟不会数据分析》
是小蚊子数据分析团队的作品,适合入门。写作手法***用讲故事的方式,以平实的语言娓娓道来,不会吓到新入门的童鞋。
不过书籍中并不是所有知识都要着重看,看了就会发现,像水晶易表这种组件在实际工作中用的不多了。
而有些知识点比如数据清洗过程、SPSS、Excel都还是很有用的。工具篇也提及到了自动化报表、Vba等工具的使用,可以尝试一下。
2、深入浅出统计学、数据分析
写的比较有意思的两本书,可以通过《深入浅出统计学》回忆一下以前学过的统计学的基本知识,或者加深对某些概念的理解。
两本都是外国作者写的那种很厚的,很啰嗦的书。不过,对于入门者来说不至于会被某些“魔幻”化的传道授业者所吓倒。读《深入浅出数据分析》可以了解数据分析师的部分工作内容是怎样的。
3、《Excel这么用就对了》
在吧Excel摸摸熟,基本小数据都能搞定了。当如使用Excel貌似硬是靠实践,倒是用了一本书,不过是有关Vba的书籍。刚入门时候,不知道怎么搞,还以为要学好Vba。后来发现,Vba略懂宏的录制、代码修改基本就够日常工作用了。
想要学习大数据,应该看些什么书?
想从零开始的人,就不要过于依赖大数据。理由,大数据会制约你的想象力,桎梏你的开发能力。大数据对从零开始的人来说,只可借鉴利用,绝不可重用。常规领域里的应用,那是另一说。哈哈。对吧?
第一阶段:大数据基础语言的学习
- J***a语言基础:J***a开发介绍、熟悉Eclipse开发工具、J***a语言基础、J***a流程控制、J***a字符串、J***a数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与***
- HTML、CSS与J***aScript:PC端网站布局、HTML5+CSS3基础、WebApp页面布局、原生J***aScript交互功能开发、Ajax异步交互、jQuery应用
- J***aWeb和数据库:数据库、J***aWeb开发核心、J***aWeb开发内幕
推荐书籍:
本书为我们带来了共78条程序员必备的经验法则,针对你每天都会遇到的编程问题提出了有效、实用的解决方案。 书中的每一章都包含几个"条目",以简洁的形式呈现,自成独立的短文,它们提出了具体的建议,对于J***a平台精妙之处的独到见解,以及优秀的代码范例。每个条目的综合描述和解释都阐明了应该怎么做,不应该怎么做,以及为什么。
Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架
推荐书籍:
在大数据的背景下,我很少看到关于数据建模,数据层,数据处理需求分析以及数据架构和存储实现问题。这本书却提供了令人耳目一新的全面解决方案。
《Hadoop权威指南(中文版)》从Hadoop的缘起开始,由浅入深,结合理论和实践,全方位地介绍Hadoop这一高性能处理海量数据集的理想工具。
《Hive编程指南》是一本Apache Hive的编程指南,旨在介绍如何使用Hive的SQL方法HiveQL来汇总、查询和分析存储在Hadoop分布式文件系统上的大数据***。
推荐书籍:
《Spark 快速大数据分析》是一本为Spark 初学者准备的书,它没有过多深入实现细节,而是更多关注上层用户的具体用法。不过,本书绝不仅仅限于Spark 的用法,它对Spark 的核心概念和基本原理也有较为全面的介绍,让读者能够知其然且知其所以然。
本书***用理论与大量实例相结合的方式帮助开发人员掌握使用Spark进行分析和实现机器学习算法。通过这些示例和Spark在各种企业级系统中的应用,帮助读者解锁Spark机器学习算法的复杂性,通过数据分析产生有价值的数据洞察力。
谢谢邀请!
大数据的基础学科有三个,分别是数学、统计学和计算机学,所以学习大数据首先要具备一定的数学基础,包括高等数学、线性代数、概率论和离散数学,然后是基础的统计学基础和计算机基础。
虽然大数据的岗位比较多,遍布数据的***集、整理、存储、安全、分析、呈现等方面,但是比较核心的大数据岗位包括大数据平台研发、大数据应用开发和大数据分析等,这些岗位虽然在知识结构上有一定的区别,但是基本的大数据知识是一定要具备的,下面做一个介绍。
第一:算法设计。大数据的核心是数据价值化,数据分析则是数据价值化的重要途径,而算法设计则是数据分析的核心,因此算法设计在大数据知识体系中具有重要的地位。算法设计的书籍比较多,推荐读一下《算法导论》,这是一本比较经典的算法设计类书籍。
第二:编程语言。算法设计之后就需要进行算法实现,算法实现就需要掌握编程语言,能够实现算法的编程语言有很多,包括R、Python、J***a等都可以,推荐系统学习一下Python语言,***用Python完成算法实现在目前的大数据和机器学习领域是一个比较普遍的选择。
第三:大数据平台。大数据平台是大数据应用的基础,目前比较常见的大数据平台包括Hadoop和Spark。Hadoop平台已经被业界使用多年,已经形成了一个比较完善的生态体系,建议从Hadoop开始学起。
第四:机器学习。机器学习与大数据的关系越来越密切,目前在大数据分析领域经常***用机器学习的方式。通过大数据进入机器学习领域,再全面进入人工智能领域也是目前一个比较常见的学习路线。
大数据的学习需要一个系统的过程,另外最好在学习的过程中能结合实际案例进行,这样会有一个更好的效果。
作者简介:中国科学院大学计算机专业研究生导师,从事IT行业多年,研究方向包括动态软件体系结构、大数据、人工智能相关领域,有多年的一线研发经验。
欢迎关注作者,欢迎咨询计算机相关问题。
先夯实一下理论知识,推荐这些书籍,比较不枯燥,并且可以对数据分析有一个宏观的观念。《精益数据分析》:其中包含了大量经典案例,讲解了第一关键指标法、如何建立指标体系,避免虚荣指标、创业公司不同阶段需要什么样的数据分析侧重等都有深入浅出的理论。还有[_a***_]其他的数据分析书籍《***都是网站分析师》、《深入浅出统计学》等,内容都很详实。同时建议学习几项技能,Excel、SQL都是必备的,数据分析思想也很重要,需要了解行业关注的指标,才能让自己的数据分析技能服务于行业,建议听一些线上课程,参加线下沙龙和课程等。
欢迎关注公众号哦~SensorsDataCrop,有更多数据分析知识
互联网运营的数据分析如何做好?
回答你,互联网数据分析关键在增长
所谓数据分析,其本质就是业务分析
而业务分析的核心工作就是增长业绩
用户增长,使用量增长,变现能力增长
因此,如果你想做好互联网数据分析工作
第一,你必须具备一定的软硬件基础
软件上,你必须具备数据分析能力,一定的用户心理学能力,以及MVP团队能力
硬件上,你必须具备数据基础,ABtest的环境,以及测试工具平台。
第二,你必须掌握一定的具体实操方法
在流程上你绕不开AARRR五棍流:获客,激活,变现,留存,转介绍。其中包括大量可复用且优秀的实践方法。同时,你需要充分利用上瘾模型来研究裂变,流量池等增长路径,不断突破创新运营模式。
其实,我理解的互联网运营的数据分析不是从什么高大上的角度出发,它绕不开是什么、是多少、为什么、会怎样、又如何这几个问题。
说明白点:
是什么(树立数据标准)
是多少(数据描述状况)
为什么(探索问题原因)
会怎样(预测业务走势)
又如何(综合判断状况)
其核心就是分析数据(结合统计学等知识),找到规律(比如异动),给出结论和建议,进而能够***决策。
那么,我们可以来看一下数据分析在工作中几种常见的应用场景,切身体会一下:
活动上线前,需要做A/B测试,通过数据反馈结果,验证活动是否符合预期;活动上线后,还要分析实时数据,调整推广节奏和推广动作。
作者:ayura
链接:***s://***.zhihu***/question/62320831/answer/1***300885
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
新手运营,可以去上黄有璨三节课三节课-互联网人的在线大学 的运营课程。如果有一些基础的话,建议从P2开始上。从课程设置就可以看出来,无论是运营的底层逻辑,还是文案、用户、或活动,现在运营的每一个模块都离不开数据的。基本上如果你的每一个运营动作,都能遵循“调查-策划-行动-反馈”这一流程,也就是说,不断从数据中获得灵感,从数据中获得经验,并付诸下一次行动之中,你就算不会成为大神,也会处于不断的成长与提高之中。
同样,书籍的话,他的《运营之光》也蛮不错,适合新手阅读。
此外,当然要多上上知乎、***都是xxxx等等,英文好的话,再看看hubspot,耐心学,都有不少干货~
最后重中之重的,是要分享一下我自己的数据运营看板。希望能对你有所帮助。
PS:所有看板制作自:数据观|新一代商业管理云 我觉得它对于运营人员来说最大的意义,就是可以把运营过程中的各种渠道、各个模块使用的工具,比如百度推广、金数据、伙伴云表格、微信公众号等等,都连接到数据观的数据中心,一手数据直达一手分析,从此告别每天倒数据拼表!
我的运营管理总看板
不写代码,就能即席查询和分析数据
企业业务分析人员工作中经常会涉及数据查询、汇总、多维分析等内容。当数据存储在数据库时,如果不懂 SQL 工作将很难进行数据获取,如果将 SQL 查询工作交由专业 IT 人员,获取数据结果的时间会大幅增加,影响数据分析的时效性。
业务分析人员
如何快速有效地获取数据结果?
让东软 SaCa Dat***iz 来!
东软 SaCa Dat***iz 数据可视化分析平台在已有功能的基础上,新增即席查询与分析功能,帮助企业业务人员通过可视化界面拖拽勾选快速完成数据自由查询和分析。
SaCa Dat***iz 的即席查询与分析功能包括两部分,查询和分析。
查 询
查询是通过自由勾选或拖拽数据字段和查询条件,快速获取明细数据结果,解决业务分析对明细数据的查询需求。
主要特点是:易用、快速、即查即得。
分 析
到此,以上就是小编对于书籍类型分析数据图怎么做的问题就介绍到这了,希望介绍关于书籍类型分析数据图怎么做的3点解答对大家有用。