大家好,今天小编关注到一个比较有意思的话题,就是关于计算机专业书籍丛书推荐的问题,于是小编就整理了2个相关介绍计算机专业书籍丛书推荐的解答,让我们一起看看吧。
计算机二级office哪本教材比较好?
你好,同学,感谢邀请!
我叫梁咏,我来回答您的问题。
首先,计算机二级是教育部考试中心组织的一门考试,官方自己有专门的考试大纲和指定教材,是高等教育部出版的,至于市场其他教材都是针对这本教材再版的,所以我的建议,教材都差不多,一定要建议,就买官方的。
其次,作为二级office,主考word,excel,ppt三门,相应大家都了解它是一个纯操作软件,所以作为培训了7年计算机二级的我来说,觉得教材不那么重要,毕竟纸是动不了的,个人建议买一套视频教程更好!
最后,针对这个考试给您再提一个小建议,这个考试是上级题库抽题考试,所以一个能准确评分的题库很重要,随时自测和纠错很重要。
另,祝大家考出好成绩,有更多关于考试和资料的问题欢迎留言和找我。
谢谢邀请~
我是大三的时候考的计算机二级office,距离现在也有两三年了,我们那时候还是挺好考的,不过你能不能考过跟运气还是有 很大关系的,为什么这么说呢?
因为计算机考试都是机考,计算机随机抽题,题目有难有易,如果你抽到一份比较简单的不就很容易啦!我抽的题相对来说就比较简单!
说到教材,我觉得没有必要,不知道你们学校是怎样的,我们学校报名的地方(现在可以网上报名,不过还是需要现场确认)有卖光盘的,30多块钱,你可以买一张,考试题就是从这几年抽的,提前一个月开始复习,没有就练这些题就行了,不过选择题看着可能还是没有纸质版看着方便,你可以找找***打印一下。
现在计算机考试我两年前比着好像更难了,去年12月份我的一个室友参加了,她复习的还算比较认真,反正比我本科的时候复习的认真多了,不过最后没有过,因为她抽到的题目,其中有两个大题都特别复杂,也正好是她复习是放弃的两个,所以啊就没有过!
我也看了她复习时看的题目,真的更难了,我以前复习的时候感觉比较复杂的题差不多目也就百分之二十,现在感觉差不多有百分之八十。
所以你最好把所有的题目都好好看一遍,加油↖(^ω^)↗!
建议使用未来教育的备考软件,我当时考二级office就是用这个软件,效果非常好。
未来教育里面会有配套的手机APP,配合手机使用效果会非常好,多多练习软件里的试题就可以。你考试的会遇到许多原题的,相信我
从哪本书开始学习python比较好?
对于初学者来说,Python还是很友好的,它是最接近自然语言的一种编程语言。
不过对于零基础的小白来说,要感受到Python的友好才能建立学习信心,所以要选对入门书籍。
新手选教材,一定要选择浅显易懂的,切忌选择那种有编程基础的人学习的Python书籍,它们只会不断的给你添堵,然后不断的打击你的自信心。
《与孩子一起学编程》
这本书说是给儿童设计的,所以内容比较生动。非常非常非常简单易懂 不用花太长时间就能看下来一遍。而且里面的例子也很有趣,不像别的书籍里面就是单纯的input一行行代码,结果output一行行文字。
import一个easygui,初学者分分钟做个图形界面出来,对于初学python,成就感up!!!
《笨办法学python》
经典中的经典。
Python作为目前非常火的一门语言,切入进来学习还是相当必要,学习的时候不需要很多书,选择一本就行。
基础不是很好可以用 笨方法学Python 这本书作为入门书籍
希望能帮到你
如果是基础的话,我觉得找个在线网站学习下入门就行了。那如果是想要系统学习的话我还是建议分方向去学习更高效。比如下面三个,分别针对安全领域,数据分析,网络爬虫,等等。如果是游戏方向或者机器学习那另外找。
当然还有一本比较推荐的是流畅的Python,比较贵,但是比较透彻。
作为一名没有基础的Python小白,可以先开始阅读《零基础入门学习Python》,看几天后,初始Python的基本语法、列表和字典、包和模块等概念。推荐这本书作为入门,书籍是基于Python3作为开发语言,具有时效性;语言轻松易懂;一边抄代码一边学语法,3天即可以稍微上手Python。
在阅读书籍期间,还可以参考***教程,配置好Python的运行环境。在win7环境下,安装了Python3.6,Anaconda3,PcCharm,后来才发现,只需要下载一个Anaconda3就可以,熟悉Python的运行环境,熟悉pip、conda等命令的用法、第三方包的安装。
此外,还配置了MySQL、N***icat、PowerBI等相关软件。现在想想,有点多余了,其实暂时是用不到的。但在做项目的时候,终会用到。
另外,对于Python新手,在刚开始学习Python的时候,总会遇到这样的一个问题:学习了相关教程,也明白相关的规则,但是给出一个功能,却无从下手,不知道怎么去实现,或者知道怎么去实现,就是写不出来,这个问题该如何解决呢?
一般可以在网上找一些大型项目进行练习,多看多练多总结,就能熟练掌握Python,形成更优化的Python思路。当然了,这个比较麻烦。
但是,如果参加培训学习,这个就比较简单了,往往课程教学中会包含这一项,Python学员可以先自己写一遍,然后再听老师的讲解,通过对比,找到疑惑点和不足之处,然后进行思路和项目的优化。
总之,Python开发的前景是非常好的。如果确实不知道怎么办,可以选择专业的学习方式,先去试听看看,只有这样,你才能知道这个学习班是否真正适合你,才能知道你是不是适合学Python技术,才不至于浪费时间、金钱和精力。
谢谢邀请,学习选择很重要!!!
python之所以火是因为人工智能的发展,个人整理学习经验仅供参考!
感觉有本书你学的差不多了就基本具备了一名合格的python编程工程师,不过可惜的是这本书没有电子版,只有纸质的。
第 1章 从数学建模到人工智能
1.1 数学建模第2章 Python快速入门
1.1.1 数学建模与人工智能
1.1.2 数学建模中的常见问题
1.2 人工智能下的数学
1.2.1 统计量
1.2.2 矩阵概念及运算
1.2.3 概率论与数理统计
1.2.4 高等数学——导数、微分、不定积分、定积分
2.1 安装Python第3章 Python[_a***_]计算库NumPy
2.1.1 Python安装步骤
2.1.2 IDE的选择
2.2 Python基本操作
2.2.1 第 一个小程序
2.2.2 注释与格式化输出
2.2.3 列表、元组、字典
2.2.4 条件语句与循环语句
2.2.5 break、continue、pass
2.3 Python高级操作
2.3.1 lambda
2.3.2 map
2.3.3 filter
3.1 NumPy简介与安装第4章 常用科学计算模块快速入门
3.1.1 NumPy简介
3.1.2 NumPy安装
3.2 基本操作
3.2.1 初识NumPy
3.2.2 NumPy数组类型
3.2.3 NumPy创建数组
3.2.4 索引与切片
3.2.5 矩阵合并与分割
3.2.6 矩阵运算与线性代数
3.2.7 NumPy的广播机制
3.2.8 NumPy统计函数
3.2.9 NumPy排序、搜索
3.2.10 NumPy数据的保存
4.1 Pandas科学计算库第6章 Python数据存储
4.1.1 初识Pandas
4.1.2 Pandas基本操作
4.2 Matplotlib可视化图库
4.2.1 初识Matplotlib
4.2.2 Matplotlib基本操作
4.2.3 Matplotlib绘图案例
4.3 SciPy科学计算库
4.3.1 初识SciPy
4.3.2 SciPy基本操作
4.3.3 SciPy图像处理案例
第5章 Python网络爬虫
5.1 爬虫基础
5.1.1 初识爬虫
5.1.2 网络爬虫的算法
5.2 爬虫入门实战
5.2.1 调用API
5.2.2 爬虫实战
5.3 爬虫进阶—高效率爬虫
5.3.1 多进程
5.3.2 多线程
5.3.3 协程
5.3.4 小结
6.1 关系型数据库MySQL第7章 Python数据分析
6.1.1 初识MySQL
6.1.2 Python操作MySQL
6.2 NoSQL之MongoDB
6.2.1 初识NoSQL
6.2.2 Python操作MongoDB
6.3 本章小结
6.3.1 数据库基本理论
6.3.2 数据库结合
6.3.3 结束语
7.1 数据获取第8章 自然语言处理
7.1.1 从键盘获取数据
7.1.2 文件的读取与写入
7.1.3 Pandas读写操作
7.2 数据分析案例
7.2.1 普查数据统计分析案例
7.2.2 小结
8.1 Jieba分词基础第9章 从回归分析到算法基础
8.1.1 Jieba中文分词
8.1.2 Jieba分词的3种模式
8.1.3 标注词性与添加定义词
8.2 关键词提取
8.2.1 TF-IDF关键词提取
8.2.2 TextRank关键词提取
8.3 word2vec介绍
8.3.1 word2vec基础原理简介
8.3.2 word2vec训练模型
8.3.3 基于gensim的word2vec实战
9.1 回归分析简介第10章 从K-Means聚类看算法调参
9.1.1 “回归”一词的来源
9.1.2 回归与相关
9.1.3 回归模型的划分与应用
9.2 线性回归分析实战
9.2.1 线性回归的建立与求解
9.2.2 Python求解回归模型案例
9.2.3 检验、预测与控制
10.1 K-Means基本概述第11章 从决策树看算法升级
10.1.1 K-Means简介
10.1.2 目标函数
10.1.3 算法流程
10.1.4 算法优缺点分析
10.2 K-Means实战
11.1 决策树基本简介第12章 从朴素贝叶斯看算法多变 193
11.2 经典算法介绍
11.2.1 信息熵
11.2.2 信息增益
11.2.3 信息增益率
11.2.4 基尼系数
11.2.5 小结
11.3 决策树实战
11.3.1 决策树回归
11.3.2 决策树的分类
12.1 朴素贝叶斯简介第13章 从推荐系统看算法场景
12.1.1 认识朴素贝叶斯
12.1.2 朴素贝叶斯分类的工作过程
12.1.3 朴素贝叶斯算法的优缺点
12.2 3种朴素贝叶斯实战
13.1 推荐系统简介第14章 从TensorFlow开启深度学习之旅
13.1.1 推荐系统的发展
13.1.2 协同过滤
13.2 基于文本的推荐
13.2.1 标签与知识图谱推荐案例
13.2.2 小结
14.1 初识TensorFlow
14.1.1 什么是TensorFlow
14.1.2 安装TensorFlow
14.1.3 TensorFlow基本概念与原理
14.2 TensorFlow数据结构
14.2.1 阶
14.2.2 形状
14.2.3 数据类型
14.3 生成数据十二法
14.3.1 生成Tensor
14.3.2 生成序列
14.3.3 生成随机数
14.4 TensorFlow实战
希望对你有帮助!!!
贵在坚持,自己掌握一些,在工作中不断打磨,高薪不是梦!!!
到此,以上就是小编对于计算机专业书籍丛书推荐的问题就介绍到这了,希望介绍关于计算机专业书籍丛书推荐的2点解答对大家有用。